

BLOCO N.º 20		
ANO(S)	10° e 1° de Formação	DISCIPLINA Física e Química A, Física e Química, Física do Som
APRENDIZAGENS ESSENCIAIS		 Aplicar, na resolução de problemas, os conceitos de massa, massa molar, fração molar, volume molar e massa volúmica de gases, explicando as estratégias de resolução.

Título/Tema do Bloco

Resolução de problemas sobre gases.

Atividades

Atividade 1

Em 1811, Avogadro concluiu que volumes iguais de gases diferentes, medidos nas mesmas condições de pressão e de temperatura, contêm o mesmo número de moléculas. A partir deste princípio, tornou-se possível calcular o volume molar, V_{m} , de um gás e também a sua densidade, em quaisquer condições de pressão e temperatura.

Calcule a densidade do dióxido de carbono (CO₂), em condições normais de pressão e temperatura (condições PTN).

$$A_r(C) = 12,01 \qquad M(CO_2) = 12,01 + 2 \times 16,00 = 44,01 \ gmol^{-1}$$

$$V_m(\text{PTN}) = 22,4 \ dm^3 mol^{-1} \qquad \rho = \frac{M}{V_m} \qquad \rho(CO_2) = \frac{44,01}{22,4} = 1,96 \ gdm^{-3}$$

Secundário/10° Ano e 1º de Formação

Χ

Adaptado de Teste Intermédio, 2008

Atividade 2

Tendo em conta a conclusão de Avogadro, selecione a opção que completa corretamente a frase seguinte.

Em condições PTN, ...

 \sim (A) ... uma mistura de 0,25 mol de $\rm O_2$ e 0,75 mol de $\rm N_2$ ocupa 22,4 dm 3 .

ceil (B) ... 1,0 mol de $m O_2$ ocupa um volume menor do que 1,0 mol de $m CO_2$.

(C) ... a densidade de um gás é tanto maior quanto menor for a sua massa molar.

(D) ... massas iguais de N_2 e de O_2 ocupam o mesmo volume.

Secundário/10° Ano e 1º de Formação

Χ

Adaptado de Teste Intermédio, 2008

Atividade 3

Considere que a densidade do CO2 (g), à pressão de 1 atm e à temperatura de 25 °C, é igual a

Calcule o volume ocupado por $\frac{N_A}{2}$ moléculas de CO_2 (g) nas condições de pressão e de temperatura referidas, sendo $N_{A}\,$ a constante de Avogadro.

$$A_r(C) = 12,01$$
 $M(CO_2) = 12,01 + 2 \times 16,00 = 44,01 \ gmol^{-1}$ $A_r(O) = 16,00$

$$\rho = \frac{M}{V_m} \iff V_m = \frac{M}{\rho}$$
 $V_m = \frac{44,01}{1,80} = 24,5 \ dm^3 mol^{-1}$

$$n = \frac{N}{N_A}$$
 $n = \frac{\frac{N_A}{2}}{N_A} = 0.5 \, mol$ $n = \frac{V}{V_m}$ $V = 0.5 \times 24.5 = 12.2 \, dm^3$

Adaptado de Exame Nacional, 2010 - 2F

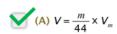
Secundário/10° Ano e 1º de Formação

Secundário/10° Ano e 1º de

Formação

Secundário/10° Ano e 1º de

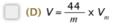
Formação


Χ

Atividade 4

O dióxido de carbono, CO_2 ($M = 44,0 \text{ g mol}^{-1}$), é o componente minoritário de maior concentração no ar atmosférico.

Considere V o volume de dióxido de carbono presente na atmosfera, \emph{m} a sua massa e $V_{
m m}$ o volume molar de um gás.


A expressão que permite determinar o volume de CO2, no ar atmosférico, é:

(A)
$$V = \frac{m}{44} \times V_m$$
 $n = \frac{V}{V_m} \iff V = n \times V_m$ (C) $V = \frac{44}{m \times V_m}$

$$(C) V = \frac{44}{m \times V_m}$$

(B)
$$V = \frac{m}{44 \times V_m}$$

$$V = n \times V_m \iff V = \frac{m}{M} \times V_m$$

Fonte: A auladigital (adaptado)

Atividade 5

O metano, CH_4 , o etano, C_2H_6 , o propano, C_3H_8 , e o butano, C_4H_{10} , são gases nas condições normais de pressão e temperatura (PTN).

Nessas condições, a massa volúmica de um dos gases é aproximadamente 1,969 g dm⁻³.

Esse gás é o: $M(CH_4) = 12,01 + 4 \times 1,01 = 16,05 \ gmol^{-1}$

$$M(C_2H_6) = 2 \times 12,01 + 6 \times 1,01 = 30,08 \ gmol^{-1}$$

(A) Metano, CH₄
$$M(C_2H_6) = 2 \times 12,01 + 6 \times 1,01 = 30,08 \ gmol^{-1}$$
$$M(C_3H_8) = 3 \times 12,01 + 8 \times 1,01 = 44,11 \ gmol^{-1}$$

$$V_{\rm m}$$
 (PTN)=22,4 dm³mol⁻¹

(B) Etano,
$$C_2H_6$$
 $M(C_4H_{10}) = 4 \times 12,01 + 10 \times 1,01 = 58,14 \ gmol^{-1}$

$$A_{\rm r}({\rm C}) = 12,01$$

$$\rho = \frac{M}{M} \iff M = \rho \times V_m$$

$$A_{r}(H) = 1,01$$

(C) Propano,
$$C_3H_8$$
 $\rho = \frac{M}{V_m} \Leftrightarrow M = \rho \times V_m$

$$A_{\rm r}({\rm H}) = 1.0$$

(D) Butano, C_4H_{10} $M = 1,969 \times 22,4 = 44,11 \ gmol^{-1}$

Adaptado de Teste Intermédio, 2008

Atividade 6

Um recipiente contém, em condições PTN, uma determinada massa de oxigénio gasoso (O₂). Esse Secundário/10° Ano e 1° de recipiente foi esvaziado, limpo e depois cheio com gás metano (CH_4) nas mesmas condições de pressão e temperatura.

Formação

(A) O número de moles de O ₂ é o dobro do número de moles de CH ₄ .	$A_{\rm r}({\rm C})$ = 12,01
(B) O número de moléculas no recipiente é igual para os dois gases.	$A_{\rm r}({\rm H}) = 1.01$
(C) O O ₂ tem o dobro do número de átomos de CH ₄ no recipiente.	$A_{\rm r}({\rm O}) = 16,00$

Fonte: A auladigital (adaptado)

(D) Os gases têm a mesma massa volúmica.